Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Fitoterapia ; 175: 105922, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552806

RESUMO

Type 2 diabetes (T2D) remains a major chronic metabolic disorder affecting hundreds of millions of the global population, mostly among adults, engendering high rates of morbidity and mortality. It is characterized by complex aetiologies including insulin deficiency and resistance, and hyperglycemia, and these significantly constitute therapeutic challenges. Several pathways have been implicated in its pathophysiology and treatment including the epigenetic regulatory mechanism, notably, deoxyribonucleic acid (DNA) methylation/demethylation, histone modification, non-coding ribonucleic acid (ncRNA) modulation and other relevant pathways. Many studies have recently documented the implications of phytochemicals on the aforementioned biomarkers in the pathogenesis and treatment of T2D. In this review, the cellular and molecular mechanisms of the epigenetic effects of some bioactive alkaloidal and phenolic phytochemicals as potential therapeutic alternatives for T2D have been overviewed from the recent literature (2019-2024). From the survey, the natural product-based compounds, C1-C32 were curated as potent epigenetic modulators for T2D. Their cellular and molecular mechanisms of anti-T2D activities with relevant epigenetic biomarkers were revealed. Although, more comprehensive experimental analyses are observably required for validating their activity and toxicological indices. Thus, perspectives and challenges were enumerated for such demanding future translational studies. The review reveals advances in scientific efforts towards reversing the global trend of T2D through epigenetic phytotherapeutics.

2.
J Biomol Struct Dyn ; 42(2): 993-1014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37021485

RESUMO

The human serotonin transporters (hSERTs) are neurotransmitter sodium symporters of the aminergic G protein-coupled receptors, regulating the synaptic serotonin and neuropharmacological processes related to neuropsychiatric disorders, notably, depression. Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine and (S)-citalopram are competitive inhibitors of hSERTs and are commonly the first-line medications for major depressive disorder (MDD). However, treatment-resistance and unpleasant aftereffects constitute their clinical drawbacks. Interestingly, vilazodone emerged with polypharmacological (competitive and allosteric) inhibitions on hSERTs, amenable to improved efficacy. However, its application usually warrants adjuvant/combination therapy, another subject of critical adverse events. Thus, the discovery of alternatives with polypharmacological potentials (one-drug-multiple-target) and improved safety remains essential. In this study, carbazole analogues from chemical libraries were explored using docking and molecular dynamics (MD) simulation. Selectively, two IBScreen ligands, STOCK3S-30866 and STOCK1N-37454 predictively bound to the active pockets and expanded boundaries (extracellular vestibules) of the hSERTs more potently than vilazodone and (S)-citalopram. For instance, the two ligands showed docking scores of -9.52 and -9.59 kcal/mol and MM-GBSA scores of -92.96 and -65.66 kcal/mol respectively compared to vilazodone's respective scores of -7.828 and -59.27 against the central active site of the hSERT (PDB 7LWD). Similarly, the two ligands also docked to the allosteric pocket (PDB 5I73) with scores of -8.15 and -8.40 kcal/mol and MM-GBSA of -96.14 and -68.46 kcal/mol whereas (S)-citalopram has -6.90 and -69.39 kcal/mol respectively. The ligands also conferred conformational stability on the receptors during 100 ns MD simulations and displayed interesting ADMET profiles, representing promising hSERT modulators for MDD upon experimental validation.Communicated by Ramaswamy H. Sarma.


Assuntos
Transtorno Depressivo Maior , Proteínas da Membrana Plasmática de Transporte de Serotonina , Humanos , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Cloridrato de Vilazodona , Citalopram/farmacologia , Citalopram/metabolismo , Serotonina/química , Serotonina/metabolismo , Simulação de Dinâmica Molecular , Carbazóis/farmacologia , Simulação de Acoplamento Molecular
3.
J Mol Model ; 29(9): 281, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584781

RESUMO

CONTEXT: Modulation of disease progression is frequently started by identifying biochemical pathway catalyzed by biomolecule that is prone to inhibition by small molecular weight ligands. Such ligands (leads) can be obtained from natural resources or synthetic libraries. However, de novo design based on fragments assembly and optimization is showing increasing success. Plasmodium falciparum parasite depends on glutathione-S-transferase (PfGST) in buffering oxidative heme as an approach to resist some antimalarials. Therefore, PfGST is considered an attractive target for drug development. In this research, fragment-based approaches were used to design molecules that can fit to glutathione (GSH) binding site (G-site) of PfGST. METHODS: The involved approaches build molecules from fragments that are either isosteric to GSH sub-moieties (ligand-based) or successfully docked to GSH binding sub-pockets (structure-based). Compared to reference GST inhibitor of S-hexyl GSH, ligands with improved rigidity, synthetic accessibility, and affinity to receptor were successfully designed. The method involves joining fragments to create ligands. The ligands were then explored using molecular docking, Cartesian coordinate's optimization, and simplified free energy determination as well as MD simulation and MMPBSA calculations. Several tools were used which include OPENEYE toolkit, Open Babel, Autodock Vina, Gromacs, and SwissParam server, and molecular mechanics force field of MMFF94 for optimization and CHARMM27 for MD simulation. In addition, in-house scripts written in Matlab were used to control fragments connection and automation of the tools.


Assuntos
Antimaláricos , Plasmodium falciparum , Plasmodium falciparum/metabolismo , Simulação de Acoplamento Molecular , Ligantes , Antimaláricos/metabolismo , Glutationa/metabolismo
4.
RSC Med Chem ; 14(6): 1012-1048, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37360393

RESUMO

Antibiotic resistance (AR) remains one of the major threats to the global healthcare system, which is associated with alarming morbidity and mortality rates. The defence mechanisms of Enterobacteriaceae to antibiotics occur through several pathways including the production of metallo-ß-lactamases (MBLs). The carbapenemases, notably, New Delhi MBL (NDM), imipenemase (IMP), and Verona integron-encoded MBL (VIM), represent the critical MBLs implicated in AR pathogenesis and are responsible for the worst AR-related clinical conditions, but there are no approved inhibitors to date, which needs to be urgently addressed. Presently, the available antibiotics including the most active ß-lactam-types are subjected to deactivation and degradation by the notorious superbug-produced enzymes. Progressively, scientists have devoted their efforts to curbing this global menace, and consequently a systematic overview on this topic can aid the timely development of effective therapeutics. In this review, diagnostic strategies for MBL strains and biochemical analyses of potent small-molecule inhibitors from experimental reports (2020-date) are overviewed. Notably, N1 and N2 from natural sources, S3-S7, S9 and S10 and S13-S16 from synthetic routes displayed the most potent broad-spectrum inhibition with ideal safety profiles. Their mechanisms of action include metal sequestration from and multi-dimensional binding to the MBL active pockets. Presently, some ß-lactamase (BL)/MBL inhibitors have reached the clinical trial stage. This synopsis represents a model for future translational studies towards the discovery of effective therapeutics to overcome the challenges of AR.

5.
J Biomol Struct Dyn ; 41(19): 10096-10116, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36476097

RESUMO

Antibiotic resistance (AR) remains one of the leading global health challenges, mostly implicated in disease-related deaths. The Enterobacteriaceae-producing metallo-ß-lactamases (MBLs) are critically involved in AR pathogenesis through Zn-dependent catalytic destruction of ß-lactam antibiotics, yet with limited successful clinical inhibitors. The efficacy of relevant broad-spectrum ß-lactams including imipenem and meropenem are seriously challenged by their susceptibility to the Zn-dependent carbapenemase hydrolysis, as such, searching for alternatives remains imperative. In this study, computational molecular modelling and virtual screening methods were extensively applied to identify new putative Zn-sensitive broad-spectrum inhibitors of MBLs, specifically imipenemase-1 (IMP-1) from the IBScreen database. Three ligands, STOCK3S-30154, STOCK3S-30418 and STOCK3S-30514 selectively displayed stronger binding interactions with the enzymes compared to reference inhibitors, imipenem and meropenem. For instance, the ligands showed molecular docking scores of -9.450, -8.005 and -10.159 kcal/mol, and MM-GBSA values of -40.404, -31.902 and -33.680 kcal/mol respectively against the IMP-1. Whereas, imipenem and meropenem showed docking scores of -9.038 and -10.875 kcal/mol, and MM-GBSA of -31.184 and -32.330 kcal/mol respectively against the enzyme. The ligands demonstrated good thermodynamic stability and compactness in complexes with IMP-1 throughout the 100 ns molecular dynamics (MD) trajectories. Interestingly, their binding affinities and stabilities were significantly affected in contacts with the remodelled Zn-deficient IMP-1, indicating sensitivity to the carbapenemase active Zn site, however, with non-ß-lactam scaffolds, tenable to resist catalytic hydrolysis. They displayed ideal drug-like ADMET properties, thus, representing putative Zn-sensitive non-ß-lactam inhibitors of IMP-1 amenable for further experimental studies.


Assuntos
beta-Lactamases , beta-Lactamas , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , Meropeném/farmacologia , Simulação de Acoplamento Molecular , beta-Lactamases/metabolismo , Imipenem/farmacologia , Zinco , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
6.
J Biomol Struct Dyn ; 41(13): 6219-6235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35881145

RESUMO

Serotonin (5-HT) antagonists and reuptake inhibitors (SARIs) are atypical antidepressants for managing major depressive disorder. They are oftentimes applied as adjuvants for ameliorating aftereffects of SSRI antidepressants including insomnia and sexual dysfunction. The few available candidates of this class including lorpiprazole and trazodone also display some daunting side effects, making a continuous search for improved alternatives essential. Natural ß-carboline alkaloids (NßCs) are interestingly renowned with broad pharmacological spectrum against several neuropsychiatric disorders including depression. However, their potentials as SARIs remain underexplored. In this study, 982 NßCs retrieved from the Ambinter-Greenpharma (Amb) database were virtually screened for potent SARI alternatives using computational and biocheminformatics approaches: homology modelling of 5-HT1A receptor, Glide HTVS, SP and XP molecular docking, molecular dynamics (MD) simulation, ADMET and mutagenicity predictions. The homology receptor was validated as a good representative of human 5HT1A receptor using the RCSB structure validation and quality protocols. From the virtual screening against the 5-HT1A receptor, Amb ligands, Amb18709727 and Amb37857532 showed higher binding affinities by XP scores of -8.725 and -7.976 kcal/mol, and MMGBSA of -87.972 and -107.585 kcal/mol respectively compared to lorpiprazole, a reference SARI with XP score and MMGBSA of -6.512 and -62.788 kcal/mol respectively. They maintained ideal contacts with pharmacologically essential amino acid residues implicated in SARI mechanisms and expressed higher stability and compactness than lorpiprazole throughout the trajectories of 100 ns MD simulation. They also displayed interesting ADME, druggability, low toxicity and mutagenicity profiles, ideal for CNS drug prospects, thus, recommended as putative SARI candidates for further study.Communicated by Ramaswamy H. Sarma.


Assuntos
Transtorno Depressivo Maior , Humanos , Simulação de Acoplamento Molecular , Receptor 5-HT1A de Serotonina , Antidepressivos , Simulação de Dinâmica Molecular , Carbolinas/farmacologia
7.
J Biomol Struct Dyn ; 41(5): 1959-1977, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037841

RESUMO

The nsp3 macrodomain and nsp12 (RdRp) enzymes are strongly implicated in the virulent regulation of the host immune response and viral replication of SARS-CoV-2, making them plausible therapeutic targets for mitigating infectivity. Remdesivir remains the only FDA-approved small-molecule inhibitor of the nsp12 in clinical conditions while none has been approved yet for the nsp3 macrodomain. In this study, 69,067 natural compounds from the IBScreen database were screened for efficacious potentials with mechanistic multitarget-directed inhibitory pharmacology against the dual targets using in silico approaches. Standard and extra precision (SP and XP) Maestro glide docking analyses were employed to evaluate their inhibitory interactions against the enzymes. Four compounds, STOCK1N-45901, 03804, 83408, 08377 consistently showed high XP scores against the respective targets and interacted strongly with pharmacologically essential amino acid and RNA residues, in better terms than the standard, co-crystallized inhibitors, GS-441524 and remdesivir. Further assessments through the predictions of ADMET and mutagenicity distinguished STOCK1N-45901, a natural derivative of o-hydroxybenzoate as the most promising candidate. The ligand maintained a good conformational and thermodynamic stability in complex with the enzymes throughout the trajectories of 100 ns molecular dynamics, indicated by RMSD, RMSF and radius of gyration plots. Its binding free energy, MM-GBSA was recorded as -54.24 and -31.77 kcal/mol against the respective enzyme, while its structure-activity relationships confer high probabilities as active antiviral, anti-inflammatory, antiinfection, antitussive and peroxidase inhibitor. The IBScreen database natural product, STOCK1N-45901 (2,3,4,5,6-pentahydroxyhexyl o-hydroxybenzoate) is thus recommended as a potent inhibitor of dual nsp3 and nsp12 of SARS-CoV-2 for further study. Communicated by Ramaswamy H. Sarma.


Assuntos
Antitussígenos , COVID-19 , Humanos , SARS-CoV-2 , Relação Estrutura-Atividade , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
8.
J Ethnopharmacol ; 300: 115753, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36162546

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Parkinson's disease (PD) is a prominent health challenge characterized by complex aetiology and limited therapeutic breakthroughs. Datura metel (DM) is a medicinal plant containing active phytoconstituents with neuropharmacological potentials. In traditional medicine, it exerts anticholinergic, anti-inflammatory and antioxidant effects, and protection from organophosphate poisoning inclusively involved in the pharmacotherapy of PD. Its other PD-related medicinal potency includes treatment of motor sickness and bradycardia. However, the exact mechanisms of anti-PD effects of its phytoconstituents remain underexplored. MATERIALS AND METHODS: In this study, methanolic extract of DM was evaluated for anti-PD behavioural effects in vivo haloperidol-induced cataleptic mice. The GC-MS-identified phytochemicals were studied for one-drug-multi-target inhibitory mechanisms against some key targets for PD treatment, alpha-synuclein (ASN) and dopa decarboxylase (DDC) using molecular docking. RESULTS: and discussion: Chronic administration of 50, 100 and 200 mg/kg of DM extract improved the 14-s latency time induced by haloperidol to 54, 54 and 57 s respectively, whereas levodopa (30 mg/kg) produced 47 s in rotarod tests. Similarly, the descending times for haloperidol-induced cataleptic mice were significantly reduced from 110 s to 17.7, 17.7 and 12.5 s by the respective chronic doses of DM extract, whereas levodopa-administered mice spent 17.5 s descending the same 30 cm pole. The interesting motor coordination enhancements are suggestively due to synergistic inhibition of ASN and DCC by the phytoconstituents of DM, especially, atropine and scopolamine. From the docking analysis, the two phytochemicals interacted more potently with the active therapeutic sites of the dual targets than levodopa and carbidopa. CONCLUSION: Methanolic extract of DM contains active phytochemicals for multi-target-directed antiparkinsonian mechanisms amenable for further studies.


Assuntos
Datura metel , Doença de Parkinson , Animais , Antioxidantes/farmacologia , Antiparkinsonianos/farmacologia , Derivados da Atropina , Carbidopa , Antagonistas Colinérgicos , Dopa Descarboxilase , Haloperidol/farmacologia , Levodopa/farmacologia , Metanol , Camundongos , Simulação de Acoplamento Molecular , Doença de Parkinson/tratamento farmacológico , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Escopolamina , alfa-Sinucleína
9.
Biochim Biophys Acta Gene Regul Mech ; 1865(7): 194873, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36064110

RESUMO

Breast cancer remains one of the leading causes of cancer-related deaths globally and the most prominent among females, yet with limited effective therapeutic options. Most of the current medications are challenged by various factors including low efficacy, incessant resistance, immune evasion and frequent recurrence of the disease. Further understanding of the prognosis and identification of plausible therapeutic channels thus requires multimodal approaches. In this review, epigenetics studies of several pathways to BC oncogenesis via the inducement of oncogenic changes on relevant markers have been overviewed. Similarly, the counter-epigenetic mechanisms to reverse such changes as effective therapeutic strategies were surveyed. The epigenetic oncogenesis occurs through several pathways, notably, DNMT-mediated hypermethylation of DNA, dysregulated expression for ERα, HER2/ERBB and PR, histone modification, overexpression of transcription factors including the CDK9-cyclin T1 complex and suppression of tumour suppressor genes. Scientifically, the regulatory reversal of the mechanisms constitutes effective epigenetic approaches for mitigating BC initiation, progression and metastasis. These were exhibited at various experimental levels by classical chemotherapeutic agents including some repurposable drugs, endocrine inhibitors, monoclonal antibodies and miRNAs, natural products, metal complexes and nanoparticles. Dozens of the potential candidates are currently in clinical trials while others are still at preclinical experimental stages showing promising anti-BC efficacy. The review presents a model for a wider understanding of epigenetic oncogenic pathways to BC and reveals plausible channels for reversing the unpleasant changes through epigenetic modifications. It advances the science of therapeutic designs for ameliorating the global burden of BC upon further translational studies.


Assuntos
Produtos Biológicos , Neoplasias da Mama , Complexos de Coordenação , MicroRNAs , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Produtos Biológicos/uso terapêutico , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Complexos de Coordenação/metabolismo , Complexos de Coordenação/uso terapêutico , Ciclina T/genética , Ciclina T/metabolismo , Epigênese Genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , MicroRNAs/genética
10.
Curr Res Chem Biol ; 2: 100021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35815068

RESUMO

Viral diseases are prominent among the widely spread infections threatening human well-being. Real-life clinical successes of the few available therapeutics are challenged by pathogenic resistance and suboptimal delivery to target sites. Nanotechnology has aided the design of functionalised and non-functionalised Au and Ag nanobiomaterials through physical, chemical and biological (green synthesis) methods with improved antiviral efficacy and delivery. In this review, innovative designs as well as interesting antiviral activities of the nanotechnology-inclined biomaterials of Au and Ag, reported in the last 5 years were critically overviewed against several viral diseases affecting man. These include influenza, respiratory syncytial, adenovirus, severe acute respiratory syndromes (SARS), rotavirus, norovirus, measles, chikungunya, HIV, herpes simplex virus, dengue, polio, enterovirus and rift valley fever virus. Notably identified among the nanotechnologically designed promising antiviral agents include AuNP-M2e peptide vaccine, AgNP of cinnamon bark extract and AgNP of oseltamivir for influenza, PVP coated AgNP for RSV, PVP-AgNPs for SARS-CoV-2, AuNRs of a peptide pregnancy-induce d hypertension and AuNP nanocarriers of antigen for MERS-CoV and SARS-CoV respectively. Others are AgNPs of collagen and Bacillus subtilis for rotavirus, AgNPs labelled Ag30-SiO 2 for murine norovirus in water, AuNPs of Allium sativum and AgNPs of ribavirin for measles, AgNPs of Citrus limetta and Andrographis Paniculata for Chikungunya, AuNPs of efavirenz and stavudine, and AgNPs-curcumin for HIV, NPAuG3-S8 for HSV, AgNPs of Moringa oleifera and Bruguiera cylindrica for dengue while AgNPs of polyethyleneimine and siRNA analogues displayed potency against enterovirus. The highlighted candidates are recommended for further translational studies towards antiviral therapeutic designs.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35611784

RESUMO

BACKGROUND: Serotonin/5-HT antagonist and reuptake inhibitors (SARIs) ameliorate depression by increasing the terminal 5-HT through the activation of somatodendritic 5-HT1A autoreceptors. In addition to their therapeutic application as standalone antidepressants, they are co-administered with selective serotonin reuptake inhibitors (SSRI) to improve unpleasant side effects associated with SSRI-treated depression. However, only a few of the atypical antidepressants are available and not without some serious aftereffects. This study aims at the identification of novel promising SARIs using computational chemistry and high throughput screening. METHODS: Pharmacophore features were modelled using LigandScout 4.3 and validated through the area under curve (AUC), enrichment factor (EF) and Guner-Henry (GH) scores. Molecular docking was employed for virtual screening against modelled human 5HT1A homology receptor, molecular dynamics simulations and ADMET predictions. RESULTS: The adopted pharmacophore possesses AUC, EF and GH scores of 0.7, 30.9 and 0.6 respectively, thus validated and used for molecular database screening. The modelled 5-HT1A homology receptor, validated using RCSB structure validation protocols, was employed for molecular docking and dynamics simulations. From the IBScreen database, the ligands, STOCK6S-36853, STOCK7S-36094, STOCK3S-94557, STOCK7S-28769 and STOCK5S-36248 interacted more strongly against the 5-HT1A receptor with docking scores of -8.735, -8.677, -8.140, -7.911 and -7.710 kcal/mol, and binding free energy of -29.72, -38.87, -29.85, -7.65 and -34.71 kcal/mol respectively, compared to fluoxetine and trazodone (positive controls) while albendazole and metformin (negative controls) scored least. They demonstrated good stability, satisfy the BDDCS RO5 and thus, are identified as potent SARIs. CONCLUSION: The study represents a cost-effective, faster and environmentally friendly approach to the discovery of promising SARI antidepressants for further translational study.

12.
Turk J Biol ; 45(4): 503-517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803450

RESUMO

The nsp3 macrodomain is implicated in the viral replication, pathogenesis and host immune responses through the removal of ADP-ribosylation sites during infections of coronaviruses including the SARS-CoV-2. It has ever been modulated by macromolecules including the ADP-ribose until Ni and co-workers recently reported its inhibition and plasticity enhancement unprecedentedly by remdesivir metabolite, GS-441524, creating an opportunity for investigating other biodiverse small molecules such as ß-Carboline (ßC) alkaloids. In this study, 1497 ßC analogues from the HiT2LEAD chemical database were screened, using computational approaches of Glide XP docking, molecular dynamics simulation and pk-CSM ADMET predictions. Selectively, ßC ligands, 129, 584, 1303 and 1323 demonstrated higher binding affinities to the receptor, indicated by XP docking scores of -10.72, -10.01, -9.63 and -9.48 kcal/mol respectively than remdesivir and GS-441524 with -4.68 and -9.41 kcal/mol respectively. Consistently, their binding free energies were -36.07, -23.77, -24.07 and -17.76 kcal/mol respectively, while remdesivir and GS-441524 showed -21.22 and -24.20 kcal/mol respectively. Interestingly, the selected ßC ligands displayed better stability and flexibility for enhancing the plasticity of the receptor than GS-441524, especially 129 and 1303. Their predicted ADMET parameters favour druggability and low expressions for toxicity. Thus, they are recommended as promising adjuvant/standalone anti-SARS-CoV-2 candidates for further study.Key words: SARS-CoV-2, nsp3 macrodomain, ADP-ribose, ß-carboline, bioinformatics, drug design.

13.
Front Pharmacol ; 12: 714918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489704

RESUMO

Background: Kratom (Mitragyna speciosa Korth), a popular opioid-like plant holds its therapeutic potential in pain management and opioid dependence. However, there are growing concerns about the safety or potential toxicity risk of kratom after prolonged use. Aim of the study: The study aimed to assess the possible toxic effects of kratom decoction and its major alkaloids, mitragynine, and speciociliatine in comparison to morphine in an embryonic zebrafish model. Methods: The zebrafish embryos were exposed to kratom decoction (1,000-62.5 µg/ml), mitragynine, speciociliatine, and morphine (100-3.125 µg/ml) for 96 h post-fertilization (hpf). The toxicity parameters, namely mortality, hatching rate, heart rate, and morphological malformations were examined at 24, 48, 72, and 96 hpf, respectively. Results: Kratom decoction at a concentration range of ≥500 µg/ml caused 100% mortality of zebrafish embryos and decreased the hatching rate in a concentration-dependent manner. Meanwhile, mitragynine and speciociliatine exposure resulted in 100% mortality of zebrafish embryos at 100 µg/ml. Both alkaloids caused significant alterations in the morphological development of zebrafish embryos including hatching inhibition and spinal curvature (scoliosis) at the highest concentration. While exposure to morphine induced significant morphological malformations such as pericardial oedema, spinal curvature (lordosis), and yolk edema in zebrafish embryos. Conclusion: Our findings provide evidence for embryonic developmental toxicity of kratom decoction and its alkaloids both mitragynine and speciociliatine at the highest concentration, hence suggesting that kratom consumption may have potential teratogenicity risk during pregnancy and thereby warrants further investigations.

14.
Infect Genet Evol ; 93: 104944, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052418

RESUMO

Since the emergence of their primitive strains, the complexity surrounding their pathogenesis, constant genetic mutation and translation are contributing factors to the scarcity of a successful vaccine for coronaviruses till moment. Although, the recent announcement of vaccine breakthrough for COVID-19 renews the hope, however, there remains a major challenge of accessibility to urgently match the rapid global therapeutic demand for curtailing the pandemic, thereby creating an impetus for further search. The reassessment of results from a stream of experiments is of enormous importance in identifying bona fide lead-like candidates to fulfil this quest. This review comprehensively highlights the common pathomechanisms and pharmacological targets of HCoV-OC43, SARS-CoV-1, MERS-CoV and SARS-CoV-2, and potent therapeutic potentials from basic and clinical experimental investigations. The implicated targets for the prevention and treatment include the viral proteases (Mpro, PLpro, 3CLpro), viral structural proteins (S- and N-proteins), non-structural proteins (nsp 3, 8, 10, 14, 16), accessory protein (ns12.9), viroporins (3a, E, 8a), enzymes (RdRp, TMPRSS2, ADP-ribosyltransferase, MTase, 2'-O-MTase, TATase, furin, cathepsin, deamidated human triosephosphate isomerase), kinases (MAPK, ERK, PI3K, mTOR, AKT, Abl2), interleukin-6 receptor (IL-6R) and the human host receptor, ACE2. Notably among the 109 overviewed inhibitors include quercetin, eriodictyol, baicalin, luteolin, melatonin, resveratrol and berberine from natural products, GC373, NP164 and HR2P-M2 from peptides, 5F9, m336 and MERS-GD27 from specific human antibodies, imatinib, remdesivir, ivermectin, chloroquine, hydroxychloroquine, nafamostat, interferon-ß and HCQ from repurposing libraries, some iron chelators and traditional medicines. This review represents a model for further translational studies for effective anti-CoV therapeutic designs.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/etiologia , Coronavirus/patogenicidade , Interações Hospedeiro-Patógeno , Antivirais/uso terapêutico , Coronavirus/efeitos dos fármacos , Coronavirus/metabolismo , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Coronavirus Humano OC43/efeitos dos fármacos , Coronavirus Humano OC43/patogenicidade , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Eur J Pharmacol ; 893: 173837, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359647

RESUMO

Neuropsychiatric disorders are diseases of the central nervous system (CNS) which are characterised by complex pathomechanisms that including homeostatic failure, malfunction, atrophy, pathology remodelling and reactivity anomaly of the neuronal system where treatment options remain challenging. ß-Carboline (ßC) alkaloids are scaffolds of structurally diverse tricyclic pyrido[3,4-b]indole alkaloid with vast occurrence in nature. Their unique structural features which favour interactions with enzymes and protein receptor targets account for their potent neuropharmacological properties. However, our current understanding of their biological mechanisms for these beneficial effects, especially for neuropsychiatric disorders is sparse. Therefore, we present a comprehensive review of the scientific progress in the last two decades on the prospective pharmacology and physiology of the ßC alkaloids in the treatment of some neuropsychiatric conditions such as depression, anxiety, Alzheimer's disease, Parkinson's disease, brain tumour, essential tremor, epilepsy and seizure, licking behaviour, dystonia, agnosia, spasm, positive ingestive response as demonstrated in non-clinical models. The current evidence supports that ßC alkaloids offer potential therapeutic agents against most of these disorders and amenable for further drug design.


Assuntos
Carbolinas/uso terapêutico , Fármacos do Sistema Nervoso Central/uso terapêutico , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistema Nervoso Central/efeitos dos fármacos , Carbolinas/efeitos adversos , Carbolinas/química , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Fármacos do Sistema Nervoso Central/efeitos adversos , Fármacos do Sistema Nervoso Central/química , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/fisiopatologia , Doenças do Sistema Nervoso Central/psicologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
16.
Curr Pharm Des ; 25(7): 817-831, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834826

RESUMO

Modulating cellular processes through extracellular chemical stimuli is medicinally an attractive approach to control disease conditions. GPCRs are the most important group of transmembranal receptors that produce different patterns of activations using intracellular mediators (such as G-proteins and Beta-arrestins). Adenosine receptors (ARs) belong to GPCR class and are divided into A1AR, A2AAR, A2BAR and A3AR. ARs control different physiological activities thus considered valuable target to control neural, heart, inflammatory and other metabolic disorders. Targeting ARs using small molecules essentially works by binding orthosteric and/or allosteric sites of the receptors. Although targeting orthosteric site is considered typical to modulate receptor activity, allosteric sites provide better subtype selectivity, saturable modulation of activity and variable activation patterns. Each receptor exists in dynamical equilibrium between conformational ensembles. The equilibrium is affected by receptor interaction with other molecules. Changing the population of conformational ensembles of the receptor is the method by which orthosteric, allosteric and other cellular components control receptor signaling. Herein, the interactions of ARs with orthosteric, allosteric ligands as well as intracellular mediators are described. A quinary interaction model for the receptor is proposed and energy wells for major conformational ensembles are retrieved.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Receptores Purinérgicos P1/química , Sítio Alostérico , Ligantes
17.
Addict Biol ; 24(5): 935-945, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30088322

RESUMO

Mitragyna speciosa is reported to be beneficial for the management of chronic pain and opioid withdrawal in the evolving opioid epidemic. Data on the blood-brain barrier (BBB) transport of mitragynine and 7-hydroxymitragynine, the active compounds of the plant, are still lacking and inconclusive. Here, we present for the first time the rate and the extent of mitragynine and 7-hydroxymitragynine transport across the BBB, with an investigation of their post-BBB intra-brain distribution. We utilized an in vitro BBB model to study the rate of BBB permeation of the compounds and their interaction with efflux transporter P-glycoprotein (P-gp). Mitragynine showed higher apical-to-basolateral (A-B, i.e. blood-to-brain side) permeability than 7-hydroxymitragynine. 7-Hydroxymitragynine showed a tendency to efflux, with efflux ratio (B-A/A-B) of 1.39. Both were found to inhibit the P-gp and are also subject to efflux by the P-gp. Assessment of the extent of BBB transport in vivo in rats from unbound brain to plasma concentration ratios (Kp,uu,brain ) revealed extensive efflux of both compounds, with less than 10 percent of unbound mitragynine and 7-hydroxymitragynine in plasma crossing the BBB. By contrast, the extent of intra-brain distribution was significantly different, with mitragynine having 18-fold higher brain tissue uptake in brain slice assay compared with 7-hydroxymitragynine. Mitragynine showed a moderate capacity to accumulate inside brain parenchymal cells, while 7-hydroxymitragynine showed restricted cellular barrier transport. The presented findings from this systematic investigation of brain pharmacokinetics of mitragynine and 7-hydroxymitragynine are essential for design and interpretation of in vivo experiments aiming to establish exposure-response relationship.


Assuntos
Barreira Hematoencefálica/metabolismo , Alcaloides de Triptamina e Secologanina/farmacocinética , Animais , Transporte Biológico/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Células Cultivadas , Ciclosporinas/farmacologia , Células Endoteliais/fisiologia , Masculino , Microvasos/fisiologia , Permeabilidade , Ratos Sprague-Dawley , Sus scrofa , Suínos
18.
Molecules ; 21(11)2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834876

RESUMO

This study aims to evaluate the in vitro angiotensin-converting enzyme (ACE) inhibition activity of different extracts of Orthosiphon stamineus (OS) leaves and their main flavonoids, namely rosmarinic acid (RA), sinensetin (SIN), eupatorin (EUP) and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF). Furthermore, to identify possible mechanisms of action based on structure-activity relationships and molecular docking. The in vitro ACE inhibition activity relied on determining hippuric acid (HA) formation from ACE-specific substrate (hippuryl-histidyl-leucine (HHL)) by the action of ACE enzyme. A High Performance Liquid Chromatography method combined with UV detection was developed and validated for measurement the concentration of produced HA. The chelation ability of OS extract and its reference compounds was evaluated by tetramethylmurexide reagent. Furthermore, molecular docking study was performed by LeadIT-FlexX: BioSolveIT's LeadIT program. OS ethanolic extract (OS-E) exhibited highest inhibition and lowest IC50 value (45.77 ± 1.17 µg/mL) against ACE compared to the other extracts. Among the tested reference compounds, EUP with IC50 15.35 ± 4.49 µg/mL had highest inhibition against ACE and binding ability with Zn (II) (56.03% ± 1.26%) compared to RA, TMF and SIN. Molecular docking studies also confirmed that flavonoids inhibit ACE via interaction with the zinc ion and this interaction is stabilized by other interactions with amino acids in the active site. In this study, we have demonstrated that changes in flavonoids active core affect their capacity to inhibit ACE. Moreover, we showed that ACE inhibition activity of flavonoids compounds is directly related to their ability to bind with zinc ion in the active site of ACE enzyme. It was also revealed that OS extract contained high amount of flavonoids other than RA, TMF, SIN and EUP. As such, application of OS extract is useful as inhibitors of ACE.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Flavonoides/química , Simulação de Acoplamento Molecular , Orthosiphon/química , Peptidil Dipeptidase A/química , Extratos Vegetais/química , Humanos
19.
Comput Biol Chem ; 64: 237-249, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27475235

RESUMO

BACKGROUND: Glutathione-s-transferases (GSTs) are enzymes that principally catalyze the conjugation of electrophilic compounds to the endogenous nucleophilic glutathione substrate, besides, they have other non-catalytic functions. The Plasmodium falciparum genome encodes a single isoform of GST (PfGST) which is involved in buffering the toxic heme, thus considered a potential anti-malarial target. In mammals several classes of GSTs are available, each of various isoforms. The human (human GST Pi-1 or hGSTP1) and mouse (murine GST Mu-1 or mGSTM1) GST isoforms control cellular apoptosis by interaction with signaling proteins, thus considered as potential anti-cancer targets. In the course of GSTs inhibitors development, the models of ligands interactions with GSTs are used to guide rational molecular modification. In the absence of X-ray crystallographic data, enzyme kinetics and molecular docking experiments can aid in addressing ligands binding modes to the enzymes. METHODS: Kinetic studies were used to investigate the interactions between the three GSTs and each of glutathione, 1-chloro-2,4-dinitrobenzene, cibacron blue, ethacrynic acid, S-hexyl glutathione, hemin and protoporphyrin IX. Since hemin displacement is intended for PfGST inhibitors, the interactions between hemin and other ligands at PfGST binding sites were studied kinetically. Computationally determined binding modes and energies were interlinked with the kinetic results to resolve enzymes-ligands interaction models at atomic level. RESULTS: The results showed that hemin and cibacron blue have different binding modes in the three GSTs. Hemin has two binding sites (A and B) with two binding modes at site-A depending on presence of GSH. None of the ligands were able to compete hemin binding to PfGST except ethacrynic acid. Besides bind differently in GSTs, the isolated anthraquinone moiety of cibacron blue is not maintaining sufficient interactions with GSTs to be used as a lead. Similarly, the ethacrynic acid uses water bridges to mediate interactions with GSTs and at least the conjugated form of EA is the true hemin inhibitor, thus EA may not be a suitable lead. CONCLUSIONS: Glutathione analogues with bulky substitution at thiol of cysteine moiety or at γ-amino group of γ-glutamine moiety may be the most suitable to provide GST inhibitors with hemin competition.


Assuntos
Glutationa Transferase/metabolismo , Modelos Biológicos , Simulação de Acoplamento Molecular , Plasmodium falciparum/enzimologia , Animais , Cristalografia por Raios X , Glutationa Transferase/química , HEPES/química , Hemina/química , Humanos , Cinética , Ligantes , Camundongos , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA